Tetrahedron Letters

Synthesis, resolution and applications of $3,3^{\prime}$-bis(RO)-MeOBIPHEP derivatives ${ }^{3}$

Evgueni Gorobets, Guang-Ri Sun, Bronwen M. M. Wheatley, Masood Parvez and Brian A. Keay*
Department of Chemistry, University of Calgary, Calgary, Alta, Canada T2N 1N4

Received 3 February 2004; revised 3 March 2004; accepted 10 March 2004

Abstract

A series of optically pure $3,3^{\prime}$-bis(RO)-MeO-BIPHEP derivatives are prepared and used in palladium catalyzed asymmetric transformations. The phosphine oxide of $(\pm)-5$ is prepared in four steps from p-methoxyphenol and resolved using the novel resolving reagent chloro(L-menthoxy)dimethylsilane. Subsequent conversions provide catalysts $\mathbf{8}$ and $\mathbf{9}$. Ligands 6, $\mathbf{7}$ and 10 are prepared in six steps from p-methoxyphenol and the phosphine oxides of $\mathbf{6}$ and 7, and $\mathbf{1 0}$ are resolved using di-p-toluoyl- and dibenzoyl-L-tartaric acid, respectively. (R)-3, 3^{\prime}-Bispivalate $\mathbf{8}$ is superior to the other catalysts in asymmetric Heck reaction with 2,3dihydrofuran while $(R)-(+)$-bis(tolyloxy) $\mathbf{1 0}$ and $(+)-(R)$-sugar derivative $\mathbf{9}$ are better in the Pd-catalyzed polyene cyclization; however, the absolute sense of chirality in the product from the polyene cyclization was reversed to that obtained when $(R)-(+)$ BINAP and $(R)-(+)-\mathrm{MeO}-\mathrm{BIPHEP}$ were used.

© 2004 Elsevier Ltd. All rights reserved.

Since we reported the synthesis of $(+)$-xestoquinone in 1996 in 68% ee using an asymmetric palladium catalyzed polyene cyclization (PCPC) as the key step, ${ }^{1}$ we have been interested in finding methods for increasing the enantioselectively in palladium catalyzed polyene cyclizations $\mathbf{1} \rightarrow \mathbf{3}^{2,3}$ While investigating the effect of substituents on the PCPC we found that the placement of a methyl group ortho to the triflate, that is, 2 (Scheme 1) resulted in the formation of $\mathbf{4}$ in $>96 \%$ ee when compared to 71% ee with the reaction of $\mathbf{1} \boldsymbol{3}$. PM3 (tm) semiempirical calculations ${ }^{4}$ indicated that group ortho to the triflate in 2 might be interacting strongly with one of the 3^{\prime} hydrogen atoms in (S)-BINAP after oxidative insertion of the Pd atom leading to $(S)-\mathbf{4}$, while the same interaction is not observed in the isomer leading to $(R)-4$. Hence the \%ee in the PCPC of $\mathbf{2} \rightarrow \mathbf{4}$ was higher than that of $\mathbf{1} \rightarrow \mathbf{3}$. From these calculation and experimental results, we rationalized that if the above hypothesis is true that placement of a group other than hydrogen in the 3 - and 3'-positions of BINAP should also result in an

[^0]

Scheme 1. Reagents and conditions: (a) $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, (S)-BINAP, PMP, toluene, $110^{\circ} \mathrm{C}$.
increase in the \%ee in the PCPC of $\mathbf{1} \rightarrow \mathbf{3}$. As the placement of substituents in the 3 - and 3^{\prime}-position of BINAP is not a trivial exercise, ${ }^{5}$ we decided to focus on the development of a series $3,3^{\prime}$-bis(substituted)-MeOBIPHEP ${ }^{6}$ derivatives (5-10) in which we could systematically adjust the size of the group easily in the 3 - and 3^{\prime}-positions. ${ }^{7,8}$ We herein report the synthesis, resolution and asymmetric applications of a series of new 3, 3^{\prime} -bis(substituted)-MeO-BIPHEP derivatives 5-10.

${ }^{\mathrm{f}} \square_{(+/-)-16} \mathrm{R}^{1}=$ Piv, $\mathrm{X}=\mathrm{O}$

$h \square \xrightarrow[(-)-R_{\mathrm{ax}}-17 \mathrm{R}^{1}=\mathrm{SiMe}_{2}-\text { L-Men }]{(+)-R_{\mathrm{a}}-5 \quad \mathrm{R}^{1}=\mathrm{H}}$ $\underset{(89 \%)}{\mathrm{h} \square}(+)-R_{\mathrm{ax}}-5 \quad \mathrm{R}^{1}=\mathrm{H}$

Scheme 2. Reagents and conditions: (a) $\mathrm{Ph}_{2} \mathrm{PCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, \mathrm{rt}, 12 \mathrm{~h}$, $\mathrm{H}_{2} \mathrm{O}_{2}$; (b) LDA, THF, $-60^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (c) pivalyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}$; (d) LDA, THF, $-75^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then $\mathrm{I}_{2}, \mathrm{rt}, 1 \mathrm{~h}$; (e) Cu powder, DMF, $100^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; (f) $\mathrm{AlH}_{3}, \mathrm{THF}, 67^{\circ} \mathrm{C}, 12 \mathrm{~h}(79 \%)$; (g) L-menthol$\mathrm{Me}_{2} \mathrm{SiCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 1 \mathrm{~d}$; (h) HF-pyr, THF, $-70^{\circ} \mathrm{C}$ to rt, 1 h ; (i) 2,3:4,6-di- O-isopropylidene-2-keto-L-gulonyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$, DMAP, DCM, rt, 30 min ; (j) MeI, DMF, $\mathrm{K}_{2} \mathrm{CO}_{3}$, rt, 24 h or $i-\mathrm{PrBr}$, DMF, $\mathrm{K}_{2} \mathrm{CO}_{3}, 45^{\circ} \mathrm{C}, 6 \mathrm{~h}$ or 4-iodotoluene, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, pyr, $\mathrm{CuBr}, 115^{\circ} \mathrm{C}$, $1 \mathrm{~d}(94 \%)$; (k) D-(+)-DTTA, $95 \% \mathrm{EtOH}$, separate or D-(+)-DTTA, $\mathrm{CH}_{3} \mathrm{CN}$, separate or L-(-)-DBTA, CHCl_{3}, separate; (l) HSiCl_{3}, xylene, $48 \mathrm{~h}, 145^{\circ} \mathrm{C} ; * 48 \%$ of each diastereomer.

4-Methoxyphenol (11) was treated with $\mathrm{ClPPh}_{2}{ }^{9}$ followed by $\mathrm{H}_{2} \mathrm{O}_{2}{ }^{10}$ to give $\mathbf{1 2}$ that was subsequently migrated to the ortho-position by treatment with LDA giving 13 (Scheme 2). ${ }^{11}$ Protection of the hydroxyl group as a pivalate $\mathbf{1 4}$ and introduction of an iodine atom between the methoxyl and diphenylphosphonyl groups provided 15. ${ }^{6}$ Ullmann coupling ${ }^{6,12}$ of 15 gave (\pm)-16, which was reduced with $\mathrm{AlH}_{3}{ }^{13}$ to give $(\pm)-5$. Resolution of $(\pm)-5$ or the corresponding phosphine oxide using reported methods for BINAP ${ }^{14}$ or MeO-BIPHEP ${ }^{6}$ did not work and led us to develop a new resolution method for biaryl systems containing hydroxyl groups. Treatment of (\pm)-5 with chloro(L-menthyloxy)dimethylsilane ${ }^{15}$ gave two diastereomers $(-)-R_{\mathrm{ax}}-17\left(R_{\mathrm{f}} 0.23\right)$ and $(-)-S_{\mathrm{ax}}-17\left(R_{\mathrm{f}} 0.20\right)$ that were separated by silica gel column chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}, 20: 1$). The latter diastereomer crystallized from hexanes and the absolute stereochemistry was found to be S_{ax} from the X-ray crystal structure (Fig. 1). ${ }^{\dagger}$ Removal of the silyl group from (-)- $R_{\mathrm{ax}}-\mathbf{1 7}$ and (-)- $S_{\mathrm{ax}}-\mathbf{1 7}$ provided (+)- $R_{\mathrm{ax}}-$ 5 and (-)- $S_{\mathrm{ax}}-5$, respectively. (+) $-R_{\mathrm{ax}}-5$ was subsequently converted into $(+)-\mathbf{8}$ and $\mathbf{9}$ using standard procedures.

[^1]

Figure 1. ORTEP diagram of (-)- $S_{\mathrm{ax}}-17$ drawn with 30% probability ellipsoids. Hydrogen atoms are represented as spheres of arbitrary size.

Compounds (+)-6, (+)-7 and (+)-10 were prepared by either alkylation of $\mathbf{1 3}$ with MeI or $i-\mathrm{PrBr}$ or by treatment with 4-iodotoluene in the presence of CuBr and caesium carbonate in refluxing pyridine to give 18a-c, respectively (Scheme 2). ${ }^{16}$ Introduction of an iodine atom (LDA, I_{2}) gave 19a-c, which was subsequently Ullmann coupled to give (\pm)-20a-c. Co-crystallization of (\pm)-20a and 20b first with di-p-toluoyl-D-tartaric acid (D-(+)-DTTA), filtering and a subsequent co-crystallization of the remaining mother liquor with $\mathrm{L}-(-)$-DTTA in CHCl_{3} provided (-)-20a and (+)-20b, respectively. A similar resolution on (\pm)-20c using dibenzoyl-L-tartaric acid ($\mathbf{L}-(-)-$ DBTA) gave $(+)-20 c$. Subsequent reduction with trichlorosilane ${ }^{17}$ gave (+)-6, (+)-7 and (+)-10. ${ }^{\ddagger}$

The enantiomeric purity of compounds $\mathbf{6 , 7}$ and $\mathbf{1 0}$ was determined by integrating the MeO signals in the ${ }^{1} \mathrm{H}$ NMR spectrum of the corresponding $\mathrm{L}-(-)$-DBTA complex with the corresponding bisphosphine oxides. The enantiopurity of 5 was determined in a similar manner by examination of the ${ }^{1} \mathrm{H}$ NMR of (+)- and (-)17.

With (+)-5-10 in hand we compared the efficacy of these ligands in the asymmetric Heck arylation of 2,3-dihydro furan and compared the results to those obtained with $(+)-$ BINAP 18 and (+)-MeO-BIPHEP ${ }^{6}$ (Table 1). In our hands Hayashi's reaction conditions ${ }^{19}$ reported with (+)BINAP and Hunig's base at $40^{\circ} \mathrm{C}$ for 24 h afforded lower product conversion and provided 21 and $\mathbf{2 3}$ in similar ratio and $\% \mathrm{ee}^{\S}$ to that reported by Hayashi. (+)-MeO-

[^2]Table 1. Asymmetric Heck reactions with ligands 5-10

	Ligand	Conversion (\%)	Ratio of products		
			21 (\%ee)	22	23 (\%ee)
1	(+)-(R)-BINAP	41	91 (80)	0	9 (61)
2	(+)-(R)-MeO-BIPHEP	65	83 (92)	7	10 (63)
3	$(+)-(R)-5$	No rxn	-	-	-
4	$(+)-(R)-6$	6	100 (9)	0	0
5	(+)-(R)-7	37	93 (77)	0	7 (0)
6	$(+)-(R)-8$	100	99 (90)	0	1 (10)
7	(+)-(R)-9	48	94 (81)	0	6 (53)
8	$(+)-(R)-10$	57	97 (20)	0	3 (85)

BIPHEP provided a slightly higher \% conversion and \%ee of 21 when compared to BINAP (entry 2). Trace amounts of conjugated isomer 22 were also observed with (+)-MeO-BIPHEP. ${ }^{20,21}$ No reaction was observed with bisphenol ligand (+)-5 (entry 3) due to its low solubility in benzene at $40^{\circ} \mathrm{C}$ and bismethoxy ligand (+)-6 proved equally disappointing although solubility in benzene was not an issue with this ligand (entry 4). Ligands (+)-7 (bis-$i-\mathrm{PrO}), \quad 9$ (bis-(sugarC=O)O) and 10 (bis-tolylO) provided similar \% conversions as BINAP and MeOBIPHEP (entries 5, 7 and 8) however the \%ee of 21 was slightly lower with ligands 7 and 9 while ligand 10 gave a disappointing 20% ee of $\mathbf{2 1}$. The increase in the ratio of 21/ 23 with ligands 7, 9 and 10 is noteworthy and longer reaction times might have provided better $\%$ conversion to products. To our gratification, ligand $\mathbf{8}$ out performed
both BINAP and MeO-BIPHEP by providing 100\% conversion to products after only 24 h and a much-improved ratio of $\mathbf{2 1} / \mathbf{2 3}$. The \%ee of $\mathbf{2 1}$ was similar to those obtained with BINAP and BIPHEP. Interestingly, ligands 6-10 suppressed the formation of conjugated isomer 22. ${ }^{20}$

Ligands $(+)-(R)-5-10$ where then tried in the palladium catalyzed polyene cyclization $(\mathbf{1} \rightarrow \mathbf{3})$ and compared to the results obtained with $(+)-(R)$-BINAP and $(+)-(R)-$ MeO-BIPHEP (Table 2). $(+)-(R)$-BINAP and $(+)-(R)-$ MeO-BIPHEP afforded (S) $\mathbf{3}$ in 68% and 72% ee, respectively, although the $\%$ yield with $(+)-(R)-\mathrm{MeO}-$ BIPHEP was lower than that obtained with $(+)-(R)-$ BINAP (entries 1 and 2). As above in the Hayashi reaction, ligand $(+)-(R)-5$ did not promote the reaction

Table 2. Asymmetric Pd-catalyzed polyene cyclization results with ligands 5-10

	Catalyst	Yield (\%)	Ratio of enantiomers		Ee (\%)
			(R)-3	$(S)-3$	
1	(+)-(R)-BINAP	81	84	16	68
2	(+)-(R)-MeO-BIPHEP	53	86	14	72
3	$(+)-(R)-5$	No rxn	-	-	-
4	(+)-(R)-6	69	26	74	48
5	(+)-(R)-7	76	30	70	40
6	$(+)-(R)-\mathbf{8}$	67	54	46	8
7	(+)-(R)-9	59	18	82	64
8	(+)-(R)-10	71	14	86	72

due to solubility problems in toluene at $110^{\circ} \mathrm{C}$ (entry 3). The use of pivalate ligand $(+)-(R)-\mathbf{8}$ was disappointing as it afforded essentially a racemic mixture of $\mathbf{3}$. This reaction was repeated and when a similar \%ee was obtained the enantiopurity of ligand $(+)-(R)-\mathbf{8}$ was checked but was found to a \%ee of $>97 \%$. Ligands (+)-$(R)-6$ and $(+)-(R)-7$ provided 3 in a disappointing ee of 48% and 40%, respectively. Upon closer examination of the HPLC trace;" however, it was noticed that the major isomer of the reaction in both cases was the R-isomer of 3 and not the expected S -isomer when using a biaryl ligands with absolute stereochemistry R_{ax} (cf. entries 1 and 2, Table 2). This unexpected reversal of absolute stereochemistry in $\mathbf{3}$ was also observed with ligands (+)-$(R)-9$ and 10 but in these cases the \%ee increased to 64% and 72%, respectively (entries 7 and 8). So contrary to the expected result from PM3 semi-empirical calculations, the use of a variety of $(+)-(R)-3,3^{\prime}$-bis(substi-tuted)-MeO-BIPHEP ligands 6, 7, 9 and $\mathbf{1 0}$ did not increase the $\%$ ee of the polyene cyclization but instead provided similar \%ee's of 3 as those obtained with (+)(R)-BINAP and ${ }_{* * *}^{\text {MeO-BIPHEP but with the opposite }}$ sense of chirality. ${ }^{* *}$

We have shown that a variety of $3,3^{\prime}$-bis(substituted)-MeO-BIPHEP derivatives can be easily prepared and resolved. (+)-(R)-8 proved better than BINAP and MeO-BIPHEP in the Heck reaction between phenyltriflate and 2,3-dihydrofuran while $(+)-(R)-\mathbf{6}, 7,9$ and $\mathbf{1 0}$ unexpectedly provided $(S)-\mathbf{3}$ in the intramolecular polyene cyclization. Work is continuing to rationalize the observed reversal of absolute stereochemistry and to use ligands 5-10 in other transition metal catalyzed processes.

Supplementary material

Methods for double checking the assignment of absolute stereochemistry to ligands $\mathbf{5} \mathbf{- 1 0}$ is provided along with general procedures for the Heck and intramolecular polyene cyclizations.

Acknowledgements

We thank Merck Frosst (Pointe Claire, PQ), NSERC CRD program, and the University of Calgary for financial support. We thank Kristine M. Muller for a few polyene cyclization results with catalysts 5-7 and Thomas Wood for help with some of the syntheses. In addition NSERC and the Alberta Ingenuity Fund are thanked for postgraduate scholarships (for B.M.M.W.).

[^3]
References and notes

1. (a) Maddaford, S. P.; Andersen, N. G.; Cristofoli, W. A.; Keay, B. A. J. Am. Chem. Soc. 1996, 118, 10766-10773; (b) Keay, B. A.; Maddaford, S. P.; Cristofoli, W. A.; Andersen, N. G.; Passafaro, M. S.; Wilson, N. S.; Nieman, J. A. Can. J. Chem. 1997, 75, 1163-1171; (c) Cristofoli, W. A.; Keay, B. A. Synlett 1994, 625-627.
2. (a) Lau, S. Y. W.; Keay, B. A. Synlett 1999, 605-607; (b) Lau, S. Y. W.; Andersen, N. G.; Keay, B. A. Org. Lett. 2001, 3, 181-184; (c) Che, D.; Andersen, N. G.; Lau, S. Y. W.; Parvez, M.; Keay, B. A. Tetrahedron: Asymmetry 2000, 11, 1919-1925; (d) Andersen, N. G.; McDonald, R.; Keay, B. A. Tetrahedron: Asymmetry 2001, 12, 263269.
3. For recent reviews involving Pd-cat polyene reactions, see: (a) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945-2963; (b) deMeijere, A.; Brase, S. J. Organomet. Chem. 1999, 576, 88-110; (c) Grigg, R.; Sridharan, V. J. Organomet. Chem. 1999, 576, 65-87; (d) Larock, R. C. J. Organomet. Chem. 1999, 576, 111-124; (e) Takahasi, T.; Doi, T.; Yamamoto, K. In Transiton Metals for Organic Synthesis; Beller, M, Bolm, C, Eds.; Wiley-VCH: Weinheim, 1998; Vol. 1, pp 265-274.
4. Spartan 4.1.1, Deppmeier, B. J.; Driessen, A. J.; Hehre, W. J.; Johnson, J. A.; Johnson, H. C.; Leonard, J. M.; Lou, L.; Peng, C.; Yu, J.; Baker, J.; Carpenter, J. E.; Dixon, R. W.; Fielder, S. S.; Kahn, S. D.; Pietro, W. J. Wavefunction, Inc., Irvine, CA, 1996.
5. Lau, S. Y. W. PhD Dissertation, University of Calgary, Calgary, AB, Canada, 2002.
6. (a) Schmid, R.; Cereghetti, M.; Heiser, B.; Schonholzer, P.; Hansen, H.-J. Helv. Chim. Acta 1988, 71, 897; (b) Schmid, R.; Foricher, J.; Cereghetti, M.; Schönholzer, P. Helv. Chim. Acta 1991, 74, 370-389.
7. In 1991 the first report of a 3, 3^{\prime}-disubstitued-MeOBIPHEP appeared in which Brown and Woodward prepared compound 6 as the phosphine oxide. No further transformations with this compound could be found in the literature. Brown, J. M.; Woodward, S. J. Org. Chem. 1991, 56, 6803-6809.
8. While our work was in progress, Zhang and co-workers reported the synthesis, resolution and application of a $3,3^{\prime}-$ bis(substituted)-MeO-BIPHEP derivative called o-Ph-HexaMeO-BIPHEP. (a) Tang, W.; Chi, Y.; Zhang, X. Org. Lett. 2002, 4, 1695; (b) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029-3069.
9. Hall, T. J.; Hargis, J. H. J. Org. Chem. 1986, 51, 41854189.
10. Hamashima, Y.; Kanai, M.; Shibasaki, M. Tetrahedron Lett. 2001, 42, 691-694.
11. Petros, K. A.; Agafonov, S. V.; Pokatun, V. P. J. Gen. Chem. USSR 1987, 57, 83-85.
12. Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359-1469.
13. (a) Brown, H. C.; Yoon, N. M. J. Am. Chem. Soc. 1966, 88, 1464-1472; (b) Griffin, S.; Heath, L.; Wyatt, P. Tetrahedron Lett. 1998, 39, 4405-4406.
14. Miyashita, A.; Takaya, H.; Souchi, T.; Noyori, R. Tetrahedron 1984, 40, 1245-1253.
15. (a) Wei, Z. Y.; Wang, D.; Li, J. S. J. Org. Chem. 1989, 54, 5768-5774; (b) Kaye, P. T.; Learmonth, R. A. Synth. Соттип. 1989, 19, 2337-2344.
16. Various methods for the preparation of diaryl ethers gave unreacted starting materials thus we developed our own procedure. For previous diaryl ether syntheses, see: (a) Marcoux, J.-F.; Doye, S.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 10539-10540; (b) Tomita, M. Chem. Pharm. Bull. 1965, 13, 1341-1345; (c) Gujadhur, R. K.;

Bates, C. G.; Venkataraman, D. Org. Lett. 2001, 3, 43154318.
17. Takaya, H.; Mashima, K.; Yagi, M.; Kumobayashi, H.; Taketomi, T.; Akutagawa, S.; Noyori, R. J. Org. Chem. 1986, 51, 629-635.
18. Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345.
19. (a) Ozawa, F.; Kubo, A.; Matsumoto, Y.; Hayashi, T. Organometallics 1993, 12, 4188; (b) Ozawa, F.; Kubo, A.; Hayashi, T. J. Am. Chem. Soc. 1991, 113, 1417.
20. To our knowledge we were the first to report the formation of conjugated isomer 22 in the Heck reaction between phenyltriflate and 2,3-dihydrofuran. ${ }^{21}$ This led us to investigate the mechanism of this reaction in more detail. For more information, see: Andersen, N. G. PhD Dissertation, University of Calgary, Calgary, AB, Canada, 2001.
21. Andersen, N. G.; Parvez, M.; Keay, B. A. Org. Lett. 2000, 2, 2817.

[^0]: Keywords: Asymmetric Heck; Asymmetric polyene cyclizations; Palladium; 3, ${ }^{\prime}$-Disubstituted BIPHEP derivatives.
 ${ }^{2}$ Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2004.03.073

 * Corresponding author. Tel.: +1-403-220-5340; fax: 1-403-284-1372; e-mail: keay@ucalgary.ca

[^1]: ${ }^{\dagger}$ Compound $\quad(-)-S_{\mathrm{ax}}-17: \quad$ monoclinic $\quad C 2 ; \quad a=28.3813(7) \AA$, $b=9.6063(2) \AA, \quad c=11.1778(4) \AA, \quad \beta=105.3695(10)^{\circ}, \quad V=$ 2938.52(14) $\AA^{3} ; Z=2 ; R=0.042 ; R w=0.083$.

[^2]: * All compounds gave spectral data and/or elemental analyses in accordance with their structures.
 ${ }^{\S}$ Enantiomeric excesses of 21 and 23 were determined from a Cyclodex-B column ($30 \mathrm{~m} \times 0.32 \mathrm{~mm}$ i.d.), which provided base line separation for each enantiomer. The retention times for (\pm)-21, 22 and $(\pm)-23$ were $26.5 / 26.9,29.1$ and $31.5 / 31.9 \mathrm{~min}$, respectively.

[^3]: *The enantiomeric excesses were unequivocally determined by HPLC analysis using a Chiralcel OD-H column using n-hexane/isopropanol (90:10).
 ${ }^{* *}$ The reversal of absolute stereochemistry in product $\mathbf{3}$ resulted in us double-checking the absolute stereochemistry assigned to ligands 510. See the supplemental information for more details.

